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clear that provided problems of specimen mounting 
can be overcome, the Bragg angles of any two crystals 
can be compared to about 0.1% of the width of the 
pseudo non-dispersive double-crystal rocking curve. 
Since at exact equality the rocking curves are symme- 
tric, there is no limit in principle other than that set 
by counting statistics on the precision with which 
lattice parameters can be compared. 

Finally we should point out that it is not a 'lucky 
chance' which makes these measurements possible. 
By using sufficiently high orders of Bragg reflexions 
it is inevitable that lattice-parameter matches occur in 
different materials at some accessible temperature. 

The apparatus used in these experiments was con- 
structed with a grant from the Paul Instrument fund 

which is gratefully acknowledged. One of us (J.F.C.B) 
would like to thank the Post Office for financial sup- 
port. 
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A magic-integer approach, called the P-S set method is described. A primary (P) set of reflexions 
contains some which fix the origin and enantiomorph and others expressed symbolically in magic- 
integer form. Probable phases for a secondary (S) set of reflexions are derived, also in symbolic form, 
from single triple-phase relationships containing a pair of P reflexions. Relationships which link the 
combined P and S sets give rise to the terms of a Fourier map, the peaks of which indicate likely sets 
of phases for all the reflexions under consideration. These sets of phases are used as starting points for 
the computer program MULTAN. The process is completely automated and is illustrated by the solu- 
tion of the structure of cephalotaxine, CIsH2104N, the space group of which is C2 with two molecules 
in the asymmetric unit. 

Introduction 

In a recent paper White & Woolfson (1975) described 
a technique whereby phases may be represented to a 
sufficient degree of approximation in a symbolic form 
such that a single symbol may be used to represent 
several phases. Thus for a suitable set of m integers 
- nl, n2, . . . ,nm - one may write 

~or=nrx mod (1), r =  1 to m, (1) 

where the phase angles, ¢, are expressed in cycles and 
the set of equations is approximately satisfied for some 
value of x in the range 0 < x < 1. 

Trials by White & Woolfson (1975) showed that a 
simple application of magic integers, in a way which is 
a blend of the symbolic-addition and multiple-solution 

approaches, could lead to complete and straightfor- 
ward solutions of structures which had been solved 
rather tortuously from E maps given by the MULTAN 
computer package. The extension of the magic-integer 
approach which is described in this paper is even more 
powerful and has solved a number of known test 
structures for which the automatic MULTAN proce- 
dure had failed completely. 

The P-S sets method 

In explaining the new magic-integer approach we shall 
use as an example the structure of cephalotaxine, 
C18H2104N, the form of the molecule of which is shown 
in Fig. 1. The space group is C2 with a=22.84,  b =  
8-15, c =  19.54 A and t =  117.7 °. There are two mole- 



368 T H E  A P P L I C A T I O N  O F  P H A S E  R E L A T I O N S H I P S  TO C O M P L E X  S T R U C T U R E S .  v I I i  

cules in the asymmetric  unit, so that  there are 46 non- 
hydrogen atoms to be found. Many  at tempts to solve 
the structure with MULTAN failed miserably and the 
structure was finally solved by a Pat terson vector- 
search approach  with a model taken f rom the solution 
of  the structure of  the bromo derivative. 

When phases, with magic-integer representation, are 
linked together in the form of  triple-product phase 
relationships then there are four  influences which cause 
the value of  the invariant,  so expressed, to deviate f rom 
0 mod (1). These influences are the errors in repre- 
senting the three phases and the actual value of  the 
invariant  itself. Errors  in representing phases are 
inherent  in the magic-integer approach;  they are the 
price which has to be paid for the advantage of  being 
able simultaneously to handle a large number  of  un- 
known phases. However  we can a t tempt  to reduce the 
fourth influence as far  as possible and this we do by 
initially restricting our at tention to only the very 
strongest available relationships. In the case of  ce- 
phalotaxine the routine NORMAL, the first part  of  
MULTAN, was run to convert  the raw data  into E 's ,  
the normalized structure factors, and a subset of  350 
strongest E ' s  was selected. The MULTAN routines 

SIGMA 2 and CONVERGENCE were then used to 
find the strongest 100 triple-phase relationships 
(tpr's) and it was checked that  they contained reflexions 
in terms of  which the origin and enant iomorph could 
be fixed. It requires two reflexions to fix the origin in 
this space group;  one special reflexion with indices 
hOl and with l odd, if allocated the phase 0 (or ~z), will 
select the origin on one of  the two distinct twofold 
axes. Allocation of  a definite phase to a reflexion of  
type hll will then uniquely fix the origin on that  two- 
fold axis. The enant iomorph  can now be selected by 
choosing a general reflexion of  type hkl and restricting 
its phase either to the range 0-rt or to the range zc-2z~. 
In accordance with the general MULTAN philosophy 
this can be done by restricting possible phases to one or  
other of  the pairs of  values (re/4, 3zc/4) or ( - re /4 ,  
- 3n/4). 

For  cephalotaxine the selection made  is shown in 
Table 1. The origin-fixing reflexions are given the 
values found f rom the known structure - there is no 
loss of  generality in this procedure - and the enan- 
t iomorph-fixing reflexion is restricted to the pair  
( - n / 4 ,  -3rc/4),  the value f rom the solved structure 
being 236 ° . In what  follows this phase is assumed to be 

Code 
5 

36 
6 

24 

15 
29 
32* 

33 
61" 
58 

19 

21 
49* 

22 

136 

7 

30 

P 
h k l 

18 0 
25 1 1~ 

0 2 15 

3 5 8 

17 5 3 

23 3 1"4 
13 1 5 
13 1 

3 3 11 
15 3 20 

0 4 3 

14 4 

11 5 7 
14 4 1"~ 

18 2 ~i" 

17 3 

8 4 ]'9 

7 3 1-g 

Table 1. Selection of reflexions for cephalotaxine 
Phase or S 

symbol Code h k l 
180 ° 
327 ° 
225 ° 

5y 

7y 

7 x  

9x 
9y 

l lx  
5z 

7 z  

l lx  

5 x  

9z 

l lz  

tpr 

50 18 2 6 
48 7 1 

54 3 3 7 

82 1 5 1"2 
62 14 0 

¢4s  - Cs - q~36 

~54 "4- ~6 - -  ~09 

(/762 + (09 - -  (024 

64 10 4 6 
96 16 6 3 

~64  - -  ~15  - -  ~32  

(096 - -  ( 0 9 -  ~29 

2 
20 

8 0 6 
0 6 12 

245 14 2 

279 7 5 Tg 
74 6 0 

11 18 0 
65 5 5 7 

104 4 4 10 
110 21 3 T'J 

1 6 0 1-2 
3 14 0 l-J 

219 8 6 

16 24 2 1--5 

~2 + ~ x s - -  ~61 
~20 - -  ~ s s - -  ¢6 

~7245 "1- (/76 - -  (/719 

~Olo4 - -  ¢7s - -  (o49 
tP110 -- (o9 + (o22 

~3 - -  q~33 + qh36 

q~219-- ~P6-- (o~ 

~16 - -  ~24 ~ ~30 

Phase or 
symbol 

45 ° 
147 ° 

5y+ 135 ° 

7y + 180 ° 
2y 

7x + 9y 
9x + 5y 

--7x+5z 

7z + 180 o 
7 y -  7z 

- 5x + 225 ° 
12x 
11x+ 180 ° 

- -  5 x  + 5y 

9z + 225 ° 

7y-- l lz  



J. P. D E C L E R C Q ,  G. G E R M A I N  A N D  M. M. W O O L F S O N  369 

- 3z~/4 but in practice both values would be considered 
in turn. 

These three reflexions are placed in what we call the 
primary (P) set and they are shown as the top three of 
the P set in Table 1 with their angles given in degrees. 
A process is now begun with the following objective 
- to add a predetermined number of reflexions to the 
P set which, together with the three reflexions already 
in the P set, will give rise to the greatest number of 
determinations of probable phase for other reflexions 
from single tpr's contained in the strongest 100 tpr's. 
The dependent reflexions, whose probable phases are 
given in terms of the phases of pairs of P set reflexions, 
are termed the secondary or S set and these are also 
shown in Table 1. 

The algorithm by which this process is carried out 
will be explained for cephalotaxine where the number 
of P reflexions to be added to the origin and enan- 
tiomorph-fixing reflexions is 15. First the three top 
reflexions in the P set are examined to see if they alone 
give any S set reflexions. It is found that the phases of 
reflexions with code numbers 48 and 50 can be deter- 
mined by single tpr 's from the top three reflexions in 
the P set and these two are assigned to the S set. The 
procedure now followed is to find from the 100 tpr's 
that reflexion which, when added to the existing P set 
members, will give the maximum number of S re- 
flexions. Thus reflexion 9, when added to the P set, 
gives reflexion 54 in the S set. Then follows reflexion 24 
in the P set giving two contributions to the S set, re- 
flexions 82 and 62. It is then found that no reflexion 
could be selected so as to give S set contributors and in 
this case the reflexion which occurs most frequently in 
the 100 tpr's is added to the P set; this is reflexion 15. 

At this stage it is found that reflexion 29, if added to 
the P set would give two members of the S set, those 
with codes 32 and 96, but it is also found that reflexion 
32 as a member of the P set would also give an S set 
contributor. It has been found by experience that the 
best thing to do in such a situation is to assign reflexion 
32 to the P set. It is marked with an asterisk in Table 1 
and two other P set reflexions which have arisen in the 
same way are similarly marked. A continuation of the 
procedure as outlined above eventually gives the 
complete Table 1. 

0 

OCH3 

Fig. 1. The form of the molecule of cephalotaxine. 

The selection of 15 unknown phases in the primary 
set was made on the basis of a decision to use the 
magic-integer sequence (5, 7, 9, 11, 13) with the 
variables x, y and z. However, before commenting on 
the allocation of the magic-integer-based symbols we 
should examine the next stage in the phase-determining 
process. In this we find all the tpr's which link together 
the phases in the combined P and S sets other than 
those tpr's which have been used to obtain S reflexions 
from P reflexions. There are thirteen of these and they 
are listed in Table 2. An example will show why it is 
unwise to allocate magic-integer-based phases in an 
arbitrary way. We express phase relationship (3), in 
Table 2, in terms of the phases of primary reflexions 
only, that is with the phases of secondary reflexions 
given by the tpr column in Table 1. Then 

(~110 "31"- {/711 - -  (~54 ~--- 0 

implies that 

(q79 - -  q722) 21- ((/76 - -  q722) - -  ((/79 - -  ~ 6 )  ~-- 0 

o r  

2q22- 2~6-  O. 

Table 2. Phase relationships for cephalotaxine other than 
those giving secondary from primary reflexions 

(1) ~3o - tPa6- q~5o l l z -  
(2) ~3o - -  ( ~ 4 8  - -  ( ~ 6  11 z -  
(3) tPllo + q h l -  tPs4 - lOx + 
(4) q~21-(~48-(~1o4 - l l x  + 7 z +  
(5) (~21--~a6--~49 - - l l x  --  7 Z +  
(6) {0279 - tP4s - ~49 - 11 x + 7z + 
(7) (/074 - ~082 21- ~279 
(8) (]764 -- (/974-- ~104 --  4X + 2 y +  7 Z +  
(9) (~64 - tP24 + tP4a 7x  + 2y  + 

(10) tP29 +(/732--(/76 9 x +  9y + 
(11) ~07 " 1 - ~ 0 1 6 - - ~ 0 9 6  - -  9 x +  2 y -  2z 
(12) (P2 -1-~96--~7219 2 x +  5 y - -  4 z +  
(13) tP33- tp61+tps  l l y -  5 z +  

12 ° 
12 ° 
90 ° 
33 ° 
33 ° 
33 ° 
0 o 

180 ° 
147 ° 
135 ° 

135 ° 
180 ~ 

If (/722 is represented by 13x then representation of 
tpr 3 involves 26x and we are generating high coeffi- 
cients for the variables. As was done previously by 
White & Woolfson (1975) we are going to compute a 
Fourier map and the term representing tpr 3 would 
have indices 26,0,0. The larger the indices are then the 
finer must be the net at the points of which the Fourier 
map is calculated and the longer it will take to compute. 
Thus for maximum efficiency we must so assign magic- 
integer-based symbols to our 15 primary phases that 
the indices generated by the tpr's in Table 2 have the 
least possible maximum values. To this end an algo- 
rithm has been designed giving the symbolic alloca- 
tions shown in Table 1 and its success may be judged 
by the symbolic representation of the phase relation- 
ships as shown in Table 2. It will be noticed that 
primary reflexions 58, 19 and 136 do not appear, even 
by implication through secondary reflexions, in the 
tpr's in Table 2 and they are therefore removed from 

A C 31A - 7 
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the phase-determining process. The magic-integer se- 
quence is therefore truncated to (5, 7, 9, 11). 

Each of the relationships appears in the form 

Hx+Ky+Lz+fl~_O mod (1) (2) 

where, now, the constant angle is expressed in cycles. 
A Fourier map, similar to the 9' map described by 
White & Woolfson, is now computed. This is 

9"(x,y,z)=~ IEal, cos {2rc(H,x+K,.y+L,z+fl,)} (3) 
r 

where the summation is over all the tpr's in Table 2 
and [E31, is the product of the three normalized struc- 
ture factors for the reflexions involved in the tpr. In 
fact, as we can see from Table 2 there is not much 
point in including tpr 7 which is just a constant added 
to 9' and there are only nine different sets of indices for 
the terms included in 9". 

The process now continues much as described by 
White & Woolfson except that the whole process is 
highly automated. All the steps described up to the 
present stage, including the allocation of magic- 
integer-based phases are quite automatic and require 
no intervention on the part of the program user except 
to specify the magic-integer sequence he wishes to use. 

The 9" map is computed by the FFT routine in 
MULTAN and the map is scanned automatically to 
find the highest 50 peaks. From the values of (x,y,z) 
for each of these peaks first trial values are found for 
each of the phases, for those in both the secondary and 
the primary sets, by substitution in their magic-integer- 
based symbolic representations in Table 1. However 
this can only be done for 12 primary and 16 secondary 
reflexions excluding reflexions 58, 19 and 136 in the 
primary set (as previously mentioned) and rettexions 
20, 245, 1 and 3 in the secondary set since these did not 
contribute to the 9" map. The 28 phases so found, plus 
the origin and enantiomorph fixing reflexions, are 
given in Table 3 under the column 'First approx- 
imation'. 

The next stage is to consider all the relationships 
linking the fifteen reflexions in the P set together with 
the 16 reflexions in the S set. There are 29 of these, the 
13 given in Table 2 together with the 16 which were 
used to derive those secondary reflexions given in 
Table 3. 

We construct the function 
29 

~(~6,~9,"" ",~219,~16): ~ IE3[, cos (S,) (4) 
r = l  

where the S's on the right-hand side are tpr's expressed 
in terms of ~0's from cp6 to ~016 in Table 3 and which may 
also contain a constant angle component. The origin- 
fixing reftexions are not allowed to change but the 
remainder are changed by the parameter-shift method 
described by White & Woolfson so as to maximize the 
value of (. In this process each ~0 is varied inde- 
pendently and the coupling of phases through magic 
integers is broken at this stage. The results at the end 

Table 3. The derivation of phases from the 'correct' peak 
of the 9" map for eephalotaxine peak 39, x=0.313, 

y=0"741, z=0.911 

First Param- 
approxi- eter Axis Known 

Code Symbol mation shin shin phase 

5 180 ° 180 180 180 180 
36 327 ° 327 327 352 327 

6 225 ° 225 211 261 236 
9 5y 254 244 9 334 

15 7x 69 62 137 189 
24 7y 67 84 209 237 
29 9x 294 311 326 343 
32 9y 241 254 279 215 
33 l l y  54 19 94 60 
61 5z 200 198 273 318 
21 7z 136 135 260 256 
49 l l x  159 171 271 355 
22 5x 203 210 260 236 

7 9z 72 107 207 126 
30 l l z  8 357 72 16 
50 45 ° 45 3 1  81 69 
48 147 ° 147 143 168 125 
54 5y+  135 ° 29 35 110 139 
82 7y+  180 ° 247 262 27 72 
62* 2y 174 180 180 180 
64 7 x + 9 y  310 305 45 74 
96 9 x +  5y 188 192 342 299 

2* - 7 x + 5 z  131 180 180 180 
279 7z+ 180 ° 316 315 80 77 

74* 7 y -  7z 291 0 0 0 
11' - 5 x + 2 2 5  ° 22 0 0 0 
65 12x 272 272 37 95 

104 l l x +  180 ° 339 353 93 35 
110 - 5 x + 5 y  51 36 111 158 
219 9z+225 ° 297 320 110 331 

16 7 y - l l z  59 83 133 120 

of this process are shown in Table 3 under the heading 
'Parameter shift'. 

Each of the 50 sets of phases derived after the 
parameter shift process is used as a starting point for 
the FASTAN section of MULTAN resulting in 50 sets 
of phases for 350 reflexions together with the usual 
figures of merit. These were then explored in the order 
suggested by a combined figure of merit by the cal- 
culation of E maps followed by the automatic peak- 
search procedure and line-printer output in graphical 
form of possible projected molecular fragments (De- 
clercq, Germain, Main & Woolfson, 1973). The third- 
highest figure of merit corresponded to peak 39 on the 
9, map and Table 3 is based on this peak. The phases 
found from the parameter-shift procedure differed 
greatly from the known-structure phases but this was 
due to a shift of origin along the twofold axis. A shift 
~ y = - 0 " 0 6 9  gave the phases in the penultimate 
column and with the exception of ~219 these compare 
favourably with the known phases. 

The Fourier map derived from peak 39 of the 9, 
map showed two fragments corresponding to the two 
molecules in the asymmetric unit, one containing 14 
peaks and the other one 19 peaks. Straightforward 
procedures led from this to a complete solution of the 
structure. 
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Other applications of the method 

The process described in the previous section is auto- 
matic and takes very little computer time, the greatest 
time being taken by FASTAN and the subsequent 
operations of the MULTAN package. It has been 
successful when applied to a range of structures, all 
known but all deliberately chosen for the malice they 
seem to exhibit. The very first structure tried, ]itho- 
cholic acid, was a spectacular success. With MULTAN 
there had been obtained a fragment of eight atoms, of 
which three turned out to be spurious, and from this 
by tangent-formula recycling and Fourier methods 
one could fight through to the complete structure solu- 
tion. With the magic-integer approach the final set of 
phases with the highest combined figure of merit 
showed every one of the 27 atoms in the molecule. 

The least successful application has been to a 69- 
atom structure ApApA. This could not be solved by a 
straightforward application of MULTAN but could be 
solved by applying a substantialization technique 
(Woolfson, 1954) with MULTAN. With magic integers 
the phases from the 17th highest combined figure of 
merit gave a map with a clear fragment of 19 out of the 
69 atoms, from which point tangent-formula recycling 
and classical Fourier procedures led directly to the 
solution. In this case the magic-integer approach gave 
approximately the same result as the substantialization- 
plus-MULTAN method. 

Why does the method work? 

The feature of the magic-integer approach which makes 
it so successful is that it enables a large number of 
phases, and the relationships between them, to be 
considered simultaneously, which seems to circumvent 
the problem of the 'weak link' which bedevils many 
stepwise processes. The penalty which is paid for this 
advantage is the inaccuracy of representation of 
phases. 

The parameter-shift process should, ideally, be able 
to correct the errors in phases given by the magic- 

A 

COS 

1"0 

Fig. 2. Errors in phase representation keeping the quantity t 
within the range A to B will tend to be corrected by param- 
eter-shift refinement. Q represents the true value of the 
triple-phase invariant and is the point towards which 'per- 
fect' refinement would converge. 

integer representation. The maximizing function con- 
tains terms of the general form 

lEVI cos (~,,, + ~o,, + ~,,.) (5) 

where there may be fewer than three unknown ~0's if 
one (or more) of them is a fixed phase. If the errors in 
the three phases given by the magic-integer representa- 
tion are Atyp, A~0 and A~0r, and the invariant itself has 
a true value S, then the term will have the initial value 

IE3[ cos t 
where 

t = A~0p + A~0q + A~0r + S .  (6) 

The form of the function cos t is shown in Fig. 2 
and in an ideal situation the refinement of phases will 
cause this cosine to move towards the point Q - that is 
towards having all the errors in phase equal to zero. 
However unless the initial value of t is somewhere 
in the range A to B the refinement procedure will tend 
to be influenced by this cosine term in a direction which 
increases, rather than reduces, the errors in the phase. 
If the value of s deviates significantly from zero then, 
since the refinement tends to move the value of t to- 
wards the peak of the cosine curve, there is once again 
an in-built error in the system but at least the total 
error in the three phases introduced by this effect is of 
order s. If the variance of the triple-phase invariant is 
V (Karle & Karle, 1966) and that of representing each 
of the phases by magic integers is Q2 then the standard 
deviation in the distribution of t, regarded as an un- 
known quantity with a certain probability density, is 

•t = (V+ 3Q~) 1/z. (7) 

The unknown quantity t will have an approximately 
normal distribution about zero and hence, if Qt--n/2, 
from the statistics of the normal distribution we esti- 
mate that only one in 30 or so of the cosine terms 
should hinder the refinement process. 

The situation is different for relationships which 
involve one or more secondary reflexions. In the most 
extreme case the value of t would involve the errors in 
six primary phases and the values of four invariants 
which, if they all had a standard deviation of n/4, 
would give a distribution for t with a standard devia- 
tion of I/lOxn/4 or, approximately 3n/4. Thus t 
would need to stay within ~0t of its expectation value 
for the relationship to be helpful in refinement and this 
indicates that one in five relationships would hinder 
refinement. 

An analysis along these lines would suggest that 
individual terms of the type shown in expression (3) 
should be weighted to take account of the value of Qt 
and this possibility will be investigated in future work. 

The limits of application 

A question of interest concerns the complexity of 
structure for which the magic-integer approach might 
be successful. For a complex structure with one 

A C 31A - 7* 
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hundred atoms in the asymmetric unit one may need 
to use triple-phase invariants with a standard deviation 
of n/3 or so. Again, in order to introduce enough 
magic-integer defined phases, it will be necessary to 
use long magic-integer sequences with up to eight 
integers. If a maximum integer of 100 can be tolerated 
then a root-mean-square error of slightly more than 
n/4 will result. If three variables, x, y and z, are used 
then there will be 24 primary reflexions and, our 
experience suggests, 70 to 100 secondary reflexions. 
This will be a large base from which a complete struc- 
ture solution should be possible. The time requirement 
for the whole process would be dominated by that to 
calculate a Fourier map at intervals of 1/400 in each 
of three directions. While this is a formidable task it is 
by no means an impossible one and it would be worth 
while to put this amount of effort into an operation 
which offered real hope of success with a major 
structural problem. 

Computational aspects of this project were primarily 
carried out in the Centre de Calcul, Universit6 de 

Louvain, and we are grateful for the generous provi- 
sion of these facilities. We are also grateful to Profes- 
sor R. B. Bates for providing the data for cephalotaxine 
and lithocholic acid. 

The close liaison between the laboratories at York 
and Louvain has been made possible by a grant from 
the North Atlantic Treaty Organization and other 
generous support of our activity has been given by the 
Science Research Council. 

One of us (J.P.D.) is indebted to the Fonds National 
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In addition to the classical experimental methods of crystal diffraction a number of new methods have 
become available using the time-of-flight technique for neutrons and energy-dispersive detectors for X- 
rays. It is shown that there are simple relations between the formulae for the integrated intensities of the 
different methods, and that the intensity formulae for all the methods can be simply generated, provided 
that one of them is derived in the usual way. Formulae are given for the powdered crystal and the ideally 
imperfect crystal in the kinematical approximation as well as for the large perfect crystal in the frame- 
work of the dynamical theory. 

I. Introduction 

The integrated intensity is an important quantity in 
all diffraction methods used for structure analysis. If 
a monochromatic beam is used the integration is per- 
formed over the scattering angle while in the case of 
a polychromatic beam the integration is over wave- 
length. Table 1 summarizes the possible experimental 
methods and presents the formulae for the integrated 
intensities in the kinematical approximation. In the 
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case of a powdered crystal the formulae apply to the 
whole Debye-Scherrer ring (cone) and in the case of 
a rotating single crystal a full (2n) rotation is assumed. 
We shall refer to the methods in Table 1 as A1, A2 etc. 
and discuss them below. The notation used is explained 
in §§ 2 and 3. 

The classical methods are the powder method (A 1), 
the Laue method (B2) and the monochromatic rotat- 
ing-crystal method (A3). However, in the last few years 
the time-of-flight (TOF) methods for neutrons and the 
energy-dispersive spectroscopic (EDS) methods for 
X-rays have made the remaining methods listed in 


